Roll N	BBA (Sem2 nd) BUSINESS MATHEMATICS Subject Code: BBA-203 Paper ID: [C0242]	Total No. of Pages: 02 Total No. of Questions: 09
Time:	3 Hrs.	Max. Marks: 60
INSTRUCTIONS TO CANDIDATE:		
1.	Section-A all questions are compulsory.	
2.	Attempt any four question from Section-B.	
3.	Attempt any two question from Section-C.	
SECTION-A		
		<u>10x2=20</u>

Q.1

Let $A = \{1, 2, 3\}$ (a)

 $B=\{x|x \in N, x \text{ is prime less than 5}\}$ Find A x B & B x A

- (b) Differentiate xsinx w.r.t. x
- Differentiate $\frac{2x+3}{x^2-5}$ w.r.t x (c)
- Expend $(2x-3y)^4$ by binomial theorem (d)
- Write general term in the expansion of $(x^2-y)^6$ (e)
- (f) If A and B are symmetric matrices, Prove that AB-BA in skew symmetric matrices
- If x and y are two sets such that n(x)=17, n(y)=23, $n(x \cup y)=38$ Find $n(x \cap y)$ (g)

(h) Show that
$$A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$$
 satisfies the equation $x^2 - 6x + 17 = 0$

- (i) If $x = \log_a(bc)$, $y = \log_b(ca)$, $z = \log_c(ab)$ Find value of xyz.
- (j) Find the value of $\log(ab) - \log |b|$

a2zpapers.com

SECTION-B

Q.2 Solve
$$2x - y + 3z = 4$$

 $x + y - 3z = -1$
 $5x - y + 3z = 7$
By Crameis method

Q.3. $x\sqrt{1+y} + y\sqrt{1+x} = 0$ Prove that $\frac{dy}{dx} = \frac{-1}{(1+x)^2}$

- **Q.4.** If the coefficient of (r-5)th & (2r-1)th terms in the expansion of $(1+x)^{3h}$ are equal. Find r.
- Q.5. State and Prove Dr. Morgan's laws

Q.6. If
$$\log_e \left(\frac{a+b}{2}\right) = \frac{1}{2} \left[\log_e(a) + \log_e b\right]$$
 then prove that $a=b$
SECTION-C (2x10=20)
Q.7. Prove that $\begin{vmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1+b & 1 & 1 \\ 1 & 1 & 1+c & 1 \\ 1 & 1 & 1 & 1+d \end{vmatrix}$

$$= \operatorname{abcd}\left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$$

- **Q.8.** Find two the numbers x and y such that their sum is 35 and product x^2y^5 is maximum.
- **Q.9.** Find the coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)''$ and x^{-7} in $\left(ax \frac{1}{bx^2}\right)''$ and find the relation b/w a and b so that these coefficients are equal.

.....END.....